FLASH SIMULATIONS OF EXPERIMENTS TO EXPLORE THE GENERATION OF COSMOLOGICAL MAGNETIC FIELDS AT LABORATOIRE d'UTILISATION DES LASERS INTENSES (LULI)

Anthony Scopatz

Flash Center for Computational Science
University of Chicago

RAL Tutorial
May 2012
Collaborators

- **University of Chicago**
 - M. Fatenejad, D. Lamb, P. Tzeferacos, N. Flocke, D. Lee, K. Weide

- **University of Oxford**
 - G. Gregori, J. Meinecke, C. D. Murphy, A. Ravasio, B. Reville, A. R. Bell

- **LULI/Ecole Polytechnique**
 - M. Koenig, J. R. Marques, A. Pelka, A. Ravasio, R. Yurchak, A. Benuzzi--Mounaix

- **LLNL**
 - H.-S. Park, B. Remington

- **University of Michigan**
 - R. P. Drake, C. Krauland, R. Pierson

- **University of York**
 - R. Crowston, N. Woolsey

- **ETH Zurich**
 - F. Miniati
Summary

- Magnetic fields are ubiquitous in the intergalactic medium
- The Biermann Battery effect has been proposed as the mechanism by which intergalactic magnetic fields were originally produced\(^1\)
- Recently, experiments\(^2\) have demonstrated that astrophysically relevant magnetic fields are produced near asymmetric shock fronts through the Biermann Battery mechanism
- The results of 2D rad-hydro simulations, performed using the FLASH code, will be presented which demonstrate the complex hydrodynamic evolution of the experiments
- Significant challenges exist in directly modeling the Biermann Battery source term near shock fronts in MHD simulations

\(^{1}\text{Kulsrud and Zweibel, Rep Prog Phys, 71, 046901 (2008)}\)
\(^{2}\text{Gregori, et al., Nature, 481, 480 (2012)}\)
Magnetic fields are ubiquitous in the intergalactic medium
Magnetic fields are generated through the Biermann Battery mechanism when pressure/density gradients are not aligned.

- The generalized Ohm's law sets the strength of the electric field in the MHD approximation. Only the Battery term can produce magnetic fields from an initially unmagnetized plasma:

\[
E = u \times B + \eta j + \frac{1}{n_e e} j \times B - \frac{\nabla P_e}{e n_e}
\]

- Faraday's law relates the electric field to the rate of change of the magnetic field:

\[
\left(\frac{\partial B}{\partial t} \right)_{\text{Biermann}} = c \nabla \times \left(\frac{\nabla P_e}{e n_e} \right) = c \frac{\nabla P_e \times \nabla n_e}{e n_e^2}
\]
Asymmetric shocks generate vorticity\(^1\) and will generate magnetic fields through the Biermann Battery mechanism.

\(^1\text{Hayes, J Fluid Mech, 2, 595 (1957)}\)
A 400 J, 1 ns square pulse illuminates a plastic sphere in an Argon filled chamber.
A 400 J, 1 ns square pulse illuminates a plastic sphere in an Argon filled chamber.

- 0.5 mbar Argon
- 500 μm CH sphere
A 400 J, 1.5 ns square pulse illuminates a plastic sphere in an Argon filled chamber.
A blast wave is generated which initially travels at \(\sim 100 \text{ km/s} \) but slows over time.

Blast Wave

\[
100 \text{ km/s} \rightarrow 20 \text{ km/s}
\]

0.5 mbar Argon

400 J, 2\(\omega \)
1.5 ns square pulse
400 µm spot

500 µm CH sphere

Schlieren/Shadowgraphy

100 ns
The blast wave travels past two 3-axis induction coils which measure magnetic field strength.

- **Blast Wave**: 100 km/s → 20 km/s
- **0.5 mbar Argon**
- **400 J, 2ω**
- **1.5 ns square pulse**
- **400 μm spot**
- **500 μm CH sphere**
- **3 Axis Induction Coils**
 - R = 3.2 and 4.0 cm
The coils provide time dependent measurements which show field strengths of 10's of Gauss

Blast Wave
100 km/s → 20 km/s

0.5 mbar Argon

400 J, 2ω
1.5 ns square pulse
400 μm spot

500 μm CH sphere

Peak field strength corresponds to blast wave

3.2 cm Coil, Argon, 0.5 mbar

Magnetic Field (G)

Time (micro-s)

Shot 27
Shot 29
Shot 31

3 Axis Induction Coils
R = 3.2 and 4.0 cm
Experimental Setup

Beam north 350 J
Beam south 350 J

Interferometry

3 axis induction coil

B_\perp
B_\parallel

probe beam:
Interferometry
Shadowgraphy

carbon rod

t=100 ns
carbon rod
shock
10 mm

SOP

Flash Center for Computational Science
University of Chicago
FLASH simulations have been performed to help interpret the results of the experiment

- Measured fields do not significantly affect the hydrodynamic flow
- 2D cylindrical FLASH radiation hydrodynamics experiments have revealed complex behavior
 - 3T Eulerian Hydrodynamics on AMR mesh
 - Laser Energy Deposition via ray tracing
 - Flux-limited multigroup radiation diffusion
 - Thermal conduction
 - Tabulated EOS/opacity with treatment of mixed material cells
 - Argon is relatively cool ($T_e < 1 \text{ eV}$), at late times. Accurately modeling the EOS and opacity of Argon and CH at remains challenging
- End-to-end simulations have been performed which model the laser energy deposition ($t < 1.5 \text{ ns}$) and are carried to late times ($t = 10 \mu\text{s}$)
Laser ablates a small fraction of the plastic sphere and launches a shock into the Argon gas and the target.
These features evolve revealing fairly complex structure at later times.
At the time the shock crosses the near probe in the experiment
At the time the shock crosses the far probe in the experiment

Electron Density \[\text{e/cm}^3\]
This may be better seen in a movie

See luli-400J-big_edens.mpg
Shock position changes with angle from r-axis

- One method of calibrating the simulation to the experiment is when the shock hits the coils.
- The shock position follows a standard power law before slowing down.
 \[R = R_0 \cdot t^\alpha \]
- Neither of the shocks hits its target at the appropriate time.

![Shock Positions Along Lineouts](chart.png)
Simulations with and without radiation bracket the experimental shock position measured using 3-axis coils

- Radiation preheats the Argon, affecting the shock speed
- Simulations without radiation produce too fast a shock, while preliminary radiation diffusion simulations produce too slow a shock
- Future simulations will explore the accuracy of EOS and opacity at low temperatures ($T_e < 1$ eV)
- We will also generate simulated diagnostic responses with FLASH to directly compare to experimental results
We may also compare the rad/no-rad domains

See luli-rad_no-rad_compare_edens.mpg
Summary

- The Biermann Battery effect has been proposed as the mechanism by which galactic magnetic fields were originally produced.
- Recently, experiments\(^1\) have demonstrated that astrophysically relevant magnetic fields are produced near shock fronts through the Biermann Battery mechanism.
- The results of 2D rad-hydro simulations, performed using the FLASH code, will be presented which demonstrate the complex hydrodynamic evolution of the experiments.
 - Simulated responses will be used to compare directly to diagnostics.
 - Use more accurate opacity/EOS tables.
- Significant challenges exist in directly modeling the Biermann Battery source term near shock fronts in MHD simulations.

\(^1\) Gregori, et al., *Nature*, 481, 480 (2012)