VisIt Visualization Tool

Anthony Scopatz

Original Slides by Randy Hudson

The FLASH Center, University of Chicago
Tutorial

- Lecture
- Practice
Lecture

- About VisIt
- Using VisIt

The FLASH Center, The University of Chicago
About VisIt

- Developed by DOE’s Advanced Simulation & Computing Initiative
- Continued by DOE’s Office of Nuclear Energy, ASC and Office of Science
- Free, open-source
- Built upon VTK (which is built upon OpenGL)
About VisIt

- Documentation
- Features
- Platforms
- Support
VisIt: documentation

- Online at https://wci.llnl.gov/codes/visit/manuals.html
 - Not new
 - Very useful
 - "VisIt Getting Started Manual"
 - Two tutorials
 - Basics
 - Running remotely
 - Appendix of command-line options
 - "Getting Data into VisIt"
 - Creating compatible files
 - Creating a reader plug-in
 - Instrumenting simulation code
VisIt: documentation

- Online, cont.
 - “VisIt User’s Manual”
 - Using VisIt
 - “VisIt Python Interface Manual”
 - Writing Python scripts to control VisIt
 - More at https://wci.llnl.gov/codes/visit/doc.html
 - Many tips at https://wci.llnl.gov/codes/visit/FAQ.html
- “On board”
 - Newer
 - Menu: Help → Help…
VisIt: features

- 1d, 2d, 3d data
- Meshes
 - Structured & unstructured
 - Regular grids
- Parallel, distributed (client-server)
 - Data and visualization remote
 - Rendering remote or local
- Singular, local
 - Data, visualization, rendering local
- Rendering in software or hardware
- Handles files of several GB
VisIt: platforms

- Executables of current release for
 - Windows XP / Vista / 7
 - OSX 10.5 & 10.6
 - Ubuntu 11.04
 - Redhat 6
- Older releases, other platforms at
 https://wci.llnl.gov/codes/visit/executables.html
- Can build from source... But DON'T!
VisIt: support

- Mailing lists
 - General community support: visit-users@ornl.gov
 - Special others: http://visitusers.org/index.php?title=MailingLists
 - VisIt-development group is helpful / responsive

- Wiki
 - http://visitusers.org
Using VisIt

- Starting VisIt
- Settings
- Opening files
- Visualizing data (*plots & operators*)
- Colormapping
- Quantitative analysis
- Writing output
- Client-server
- Python
- Animation
Starting VisIt (GUI)

- Command line examples
 - `visit -debug <n>`
 - `visit -assume_format FLASH`
- OSX, Linux, Unix: recommend
 - Set `PATH` to `visit` directory
 - `cd` to data directory
 - Run `visit`
- Windows
 - Icon, command line, program menu
- Non-GUI alternatives
 - Python command-line interface (CLI)
 - Python script
Settings : adjusting & saving

- Make changes in these
 - Preferences
 - File menu
 - Controls menu
 - Options menu
 - Plot Attributes menu
 - Operator Attributes menu
- Menu: Options → Save Settings
 - (Might require repetition)
- New settings should be permanent with restart
Preferences

- Mac
 - Menu: *VisIt* → *Preferences*…

- XP & Linux
 - Menu: *Options* → *Preferences*…
A few global settings:
File menu

- Saving and printing
- Each function requires a pair of menu items
Controls menu

- Controls
- A few of these later

<table>
<thead>
<tr>
<th>Controls</th>
<th>Options</th>
<th>Windows</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animation</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annotation</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color table</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database correlations</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expressions</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keyframing</td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lineout</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macros</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Options</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesh management</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query over time options</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subset</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>View</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The FLASH Center, The University of Chicago
Options menu

- Appearance, rendering, plugins
- Save Settings
Options: rendering

- Antialiasing
- Draw objects as: Surfaces, Wireframe, Points
- Use display lists: Auto, Always, Never
- Stereo: Red/Blue, Interface, Crystal Eyes, Red/Green
- Specular lighting: Strength (60%), Sharpness (10%)
Opening files - this directory

- In **Selected files** panel of main window
 - Double-click file name
 - Or…

The FLASH Center, The University of Chicago
Opening files - other directory

- Open File open dialog with one of
 - Key: Ctrl + O
 - Menu: File → Open file …
- In File open dialog, go to directory here or here
- Double-click file name
- Can group files
Opening files - by format

- In *File open* dialog
 - Select *FLASH* before opening
Visualizing data

- Plots and operators
 - Plots are chosen first
 - Operators operate first
Visualizing data

- **Plots**
 - Data or meshes, mapped to shapes or colors
 - Read data from file
 - Displayed in “visualization” windows (also “the viewer”) on the local machine
 - Which plots appear on the menu is under user control
Visualizing data

- Operators
 - Subsets of data or meshes, selected for plotting
 - Which operators appear on the menu is under user control
Visualizing data

- **Scalar data: examples**
 - 1d data
 - Curve plot
 - Cut Plane
 - Isosurface
 - Colored by same variable
 - Colored by other variable
Scalar data - 1d data

- Menu: *Plots → Curve → <varname>*
- Optional settings change
 - Menu: *Plot Attributes → Curve…*
Scalar data - cut plane

- Menu: *Plots* → *Pseudocolor* → `<varname>`
- Menu: *Operators* → *Slice*
- Optional settings change
 - Menu: *Plot Attributes* → *Pseudocolor*…
 - Menu: *Operator Attributes* → *Slice*…
Isosurface - same variable

- Menu: *Plots* → *Contour* → <varname>
- Optional settings change
 - Menu: *Plot Attributes* → *Contour*…

`{Note: The diagram shows a 3D visualization of isosurfaces with a color map and axis labels. The FLASH Center logo is present at the bottom.}`
Isosurface - other variable

- Menu: Plots → Pseudocolor → <varname>
- Menu: Operators → Isosurface
- Required settings change
 - Menu: Operator Attributes → Isosurface…
 - Change Variable
Optional settings change

Menu: Operator Attributes → Isosurface…
Vector data: examples

- (Read vector data set)
- (Define vector from input scalars)
- Glyphs
- Streamlines
 - As tubes
 - As lines
Vector data - define vector

- Menu: Controls → Expressions…

- Define <vectorvarname> as Vector Mesh Variable with \{<xname>,<yname>,<zname>\}
- Check Show variable in plot menus
Vector data - glyphs

- Menu: **Plots** → **Vector** → `<vectorvarname>`
- Optional settings change
 - Menu: **Plot Attributes** → **Vector**…
Add *Streamline* plugin to *Plot* menu

- Menu: *Options* → *Plugin Manager* ...
- *Plots* tab: click *Streamline*
- Menu: *Options* → *Save Settings*
- Restart VisIt
Streamlines - as tubes

- Menu: Plots → Streamline → <vectorvarname>

- Required settings change
 - Menu: Plot Attributes → Streamline...
 - On Appearance tab, select Tubes
Optional settings change

Menu: Plot Attributes → Streamline...
Streamlines - as lines

- Menu: Plots → Streamline → <vectorvarname>
- Required settings change
 - Menu: Plot Attributes → Streamline…
 - On Appearance tab, select Lines
Streamlines - as lines

- Optional settings change
- Menu: Plot Attributes → Streamline…
Visualizing data

- Particle data: examples
 - Pseudocolor
 - Cut Plane
 - Isosurface
 - Volume rendering
 - Particle tracks
Particle data - pseudocolor

- Menu: *Plots → Pseudocolor → <varname>*
- Optional settings change
 - Menu: *Plot Attributes → Pseudocolor…*
Menu: Plots → Pseudocolor → <varname>
Menu: Operators → Resample
Menu: Operators → Slice
Optional settings change
 Menu: Plot Attributes → Pseudocolor…
 Menu: Operator Attributes → Resample…
 Menu: Operator Attributes → Slice…
Particle data - isosurface

- Menu: Plots → Pseudocolor → <varname>
- Menu: Operators → Resample
- Menu: Operators → Isosurface
- Optional settings change
 - Menu: Plot Attributes → Pseudocolor…
 - Menu: Operator Attributes → Resample …
 - Menu: Operator Attributes → Isosurface…
Particle data - volume rendering

- Menu: Plots → Pseudocolor → <varname>
- Menu: Operators → Volume
- (Implicit resampling)
- Optional settings change
 - Menu: Plot Attributes → Pseudocolor…
 - Menu: Operator Attributes → Volume…
Colormapping

- Pseudocolor (seen earlier)
- Custom color table
- (Truecolor takes color from color vector in dataset)
Custom color table

- Menu: *Controls → Color table*
Quantitative Analysis

- Of data
 - Samples at points
 - Samples in cells
 - Samples along lines
- Of meshes
 - Size (area, volume)
 - Number elements
- Via expressions: derived data
Quantitative Analysis

- Zone Pick: cell the pick point falls in
- Node Pick: nearest node of data set
Create isosurface
Select visualization window
Click on “zone pick” or “node pick” button:
Click somewhere on plot
Data analysis - points & cells

- Picked points are displayed in visualization window
- *Pick* panel displays data at picked points
Create, e.g., *Pseudocolor* plot

Menu: *Controls* → *Query*…

In *Queries* list of *Query* panel
 - Select *Lineout*

Select visualization window

Click on “line tool” button:
Data analysis - along line

- A “widget”
- Line tool controls sampling line
- Change the line tool via its red control points to change the sampling line
Curve is displayed in a visualization window
Mesh analysis

- Menu: Controls → Query…
- Select a query
- Click query button
Expressions: function
Data analysis and synthesis

- **Expressions:** output variable
Expressions: input variable
Writing output

- Hardcopy
- Image
- Geometry
- Export database
- Animation
 - (Animations can be saved, but I don’t cover that in these slides)
Hardcopy of visualization window

Menu: File → Set Print options…

Menu: File → Print window
Output - image file

- Image of visualization window
 - Menu: File → Set Save options…
 - Select an image format
 - Click apply
 - Menu: File → Save window
(Outer, viewable) geometry of visualization window

- Menu: File → Set Save options…
- Select a geometry format
- Click apply
- Menu: File → Save window
Entire data base (all (changed) geometry and data)
- Menu: File → Export database...
- Select variables
- Select format
- Click Apply
- Click Export
Client-server

Client
- Local GUI
- Local viewer

Server
- Remote database server
- Remote compute engines

Data
- Database Server
- Compute Engine

Visualization Window
- Other Windows

VisIt Component Launcher (VCL)

The FLASH Center, The University of Chicago
- Rendering can be remote or local, depending on the need.
- There are user-controlled parameters that can affect this.

- Data remains remote.
- Visualization (graphical primitives from simulation data) is remote.
Client-server

- Rendering remotely ⇒ image pieces sent to client
- Rendering locally ⇒ graphical primitives sent to client (cut plane pieces, isosurface pieces, e.g.)
Client-server: conditions

- visit installed on all machines
- visit in search path on all machines
- Compatible VisIt releases (not patches) on all machines
- (Passwordless ssh)
Client-server: open remote file

- Single-process, local VisIt is running
- Open *File selection* window with one of…
 - Key: \textcopyright F
 - Menu: *File* → *Select file* …
Enter name of computer where data is

File selection window showing host set to localhost.
Client-server: open remote file

- VisIt starts VisIt Component Launcher (VCL) on remote machine
- VCL launches database server, compute engines, etc. and runs until you quit VisIt
- Remote files appear in *File selection* window
Client-server: open remote file

- Add files to *Selected files* list
- Can group files
Client-server: open remote file

- Dismiss *File selection* window
- Visualize the files’ data
Animation

- Flipbook
 - Simple
 - Steps of a time-variant database
 - Only time changes

- Script
 - If many frames
 - Python or Java
Keyframe
- Complex behavior
- Time + multiple other parameters change
If file format has each time step in separate file
 - Create .visit

Or
 - Let visit determine (might not be right)
These 11 slides show how to animate the viewpoint (camera location) of a contour plot over 3 time steps.

- Open file
- Create plot
- View panel
 - Menu: *Controls* → *View*…
 - Select *Advanced tab*
Keyframe Editor panel

- Menu: Controls → Keyframing…
- Set Number of frames to 3
- Click Keyframing enabled
- Suggestion: resize & move VisIt windows so they’re accessible
Animation - keyframe

About the Keyframe editor panel

- **Attributes area**
 - A horizontal entry for each parameter that can change across frames

- **Grey Keyframes area**
 - A vertical line for each keyframe
 - **Green bar** for Contour attribute means contour will be drawn in visualization window for all keyframes
 - Current keyframe is first keyframe, indicated by **blue vertical line and black triangle**
Make View window active and click on *Make camera keyframe from view*.
- Current view of plot, in visualization window, becomes first animation frame, as indicated by black diamond
- Click below second keyframe’s vertical ine to move black triangle and make that keyframe current
Make visualization window (where plot is drawn) active, and rotate plot a significant amount (e.g., 45 degrees)
Make View window active and click on Make camera keyframe from view
- Current view of plot, in visualization window, becomes second animation frame, as indicated by **black diamond**.
- Click **below third keyframe’s vertical line** to move black triangle and make *that* keyframe current.
Animation - keyframe

- Rotate plot
- Click on Make camera keyframe from view button of View window
- This is the resultant Keyframe Editor panel
Click **Copy view from camera** to enable the Time slider of the main window to animate the viewpoint.

A rough, 3-frame animation of the viewpoint can now be run in the visualization window by clicking the **play button**.
These 4 slides show how to refine the 3-step animation to one of 25 steps, thus smoothing it.

- Change **Number of frames** to 25
 - New (empty) frames are added to **Keyframes** area
 - Green bar reaches keyframe 25
Animate - keyframe

- With the mouse, drag the black diamond for keyframe 3 to keyframe 25
- Likewise, drag the diamond for keyframe 2 to some keyframe close to the middle (result is on next slide)
Click the play button of the main window’s time slider

Hmm… Result not as expected:

- Only the first 3 frames show the plot
- Reason: the green bar for the contour plot, which had been extended to keyframe 25 when the number of frames was changed, has reverted to keyframe 3
Animate - keyframe

- Use the mouse to drag the end of the green bar back to keyframe 25
- Run the animation
- Good:
 - Other frames now show views interpolated between original 3
Run `visit -cli`
- Starts interactive Python session
- Loads Python visit module

To visualize a Pseudocolor plot of variable `var` from data file `dfile`
- At Python prompt, enter
  ```python
  OpenDatabase("<path_to_file>/dfile")
  AddPlot("Pseudocolor", "var")
  DrawPlots()
  ```
Run `visit -cli -s <pythonscript_name>`
- Loads Python visit module
- Script calls VisIt commands
Menu: Controls → Command…
- Record widget clicks and see Python
- Write Python
- Execute written or recorded Python