High-Resolution Simulations of Turbulence:
intermittency, mixing, and dispersion

P.K. Yeung and Diego A. Donzis

School of Aero. Engr., Georgia Tech, Atlanta, GA
pk.yeung@ae.gatech.edu

Close collaborators: K.R. Sreenivasan (ICTP, Italy),
S.B. Pope (Cornell), B.L. Sawford (Monash, Australia)

ASC Flash Center Turbulence Mini-Workshop
University of Chicago, June 8, 2006

Supported by NSF (CTS)
Resources & Consulting: NERSC, SDSC, PSC
The meaning of “High-Resolution”

Size of computation ($\sim N^3$ grid, for isotropic turbulence):
- 1283 in 1980’s; 5123 in 1990’s; 20483 in 2000’s

Using state-of-the-art cyberinfrastructure:
- Thousands (or tens of thousands) of processors
- Petascale computing power to come by 2010...

Are the smallest scales resolved sufficiently well?
- (The answer depends..)
Direct Numerical Simulation (DNS)

- 3-D incompressible Navier-Stokes equations for conservation of mass and momentum:

\[
\frac{\partial u_i}{\partial x_i} = 0 \\
\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j}
\]

(And chemical species or heat)

- For fundamental understanding (canonical flows)

- For model development (share the data)
DNS: scales and requirements

To resolve full range of scales in space and time:
- size of domain $L_0 > L$ (largest length scale)
- grid spacing $\Delta x \lesssim \eta$ (Kolmogorov length scale)
- length of simulation $T \gg T_E$ (large-eddy time scale)
- time step $\Delta t < \tau_\eta$ (Kolmogorov time scale), further subjected to numerical stability constraints

Basic estimates for DNS at high Reynolds number:

$$N^3 \sim (L/\eta)^3 \sim Re^{9/4} \quad \text{and} \quad T_E/\tau_\eta \sim Re^{1/2}$$

- Fourier pseudo-spectral in space (FFTs), 2nd order in time
Historical Evolution of Computers and DNS

Adapted from NRC Report
Figure originally by K.R. Sreenivasan (1999)

- DNS now gives Reynolds no. comparable to or higher than in many laboratory experiments
- And can offer more (tremendous detail, quantities difficult to measure)
Some Questions and Issues

- **Intermittency at the Small Scales:**
 - Do dissipation and enstrophy scale the same at high Re?
 - Resolution effects on higher-order moments

- **Mixing of passive scalars:**
 - Do deviations from local isotropy persist at high Re?
 - Schmidt number ($Sc = \nu / D$) effects, over a wide range

- **Dispersion in a Lagrangian frame:**
 - How can we incorporate intermittency in stochastic modeling intended for high Reynolds numbers?
 - Statistics conditioned on local relative motion
Our work on High-resolution DNS

- **Stationary, isotropic turbulence:**
 - idealized geometry, with numerical forcing
 - yet justified by at least approximate small-scale universality (Kolmogorov 1941)

- Three 2048^3 simulations using large CPU allocations at:
 - NERSC facility at Lawrence Berkeley (DOE: INCITE)
 - San Diego Supercomputer Center (NSF)
 - Pittsburgh Supercomputing Center (NSF)

- Code development and benchmarking for future 4096^3
 (IBM BGW, 32k processors)
Intermittency at the Small Scales

- Intense fluctuations localized in space and time
 (topology of such regions in space is of interest)

- Structure functions and scaling exponents
 at viscous and inertial scales

- **Non-Gaussian statistics**: higher-order moments and
 far tails of PDF (subject to resolution and sampling)

- Statistics of local box averages (Kolmogorov 1962) and
 multifractal properties
Dissipation and enstrophy

- Second-order invariants of strain-rate and rotation-rate

\[\epsilon = 2\nu s_{ij}s_{ij} \text{ vs. } \zeta = \omega_i\omega_i \]

- Fluctuations of \(\epsilon \) are responsible for:
 - anomalous scaling of velocity structure functions
 - intermittency corrections to inertial-range spectrum

- Most data sources show enstrophy to be more intermittent
 - but theories suggest same scaling in high-\(Re \) limit
Effects of Resolution

Most simulations in literature aim at high Re (large L/η)
- usual criterion is $k_{max}\eta = 1.5$ which gives $\Delta x/\eta \approx 2$
- analytic behavior r^m (at small r) often not well achieved in structure functions of higher order m

Under-resolution tends to miss extreme, localized events:
- does underestimation of high-order moments affect conclusion on “same scaling at high Re” for ϵ and ζ?

Yakhot & Sreenivasan (2005) suggests a need for smaller $\Delta x/\eta$ (or higher $k_{max}\eta$) than in usual practice
Dissipation vs Enstrophy: Effect of Reynolds no.

- Same mean value, but larger higher moments for enstrophy

- **Tails of the PDFs:**
 - stretched-exponential fit, e.g.

 \[
 f_\epsilon \sim \exp[-\alpha (\epsilon/\langle \epsilon \rangle)^\beta]
 \]

 - better than log-normal theory

- **Stretched-exponential parameters** versus Reynolds number: is there an asymptotic trend?

PDFs of $\epsilon/\langle \epsilon \rangle$ and $\zeta/\langle \zeta \rangle$

$R_\lambda \sim 140 \ (256^3)$ and $700 \ (2048^3)$

\[
\begin{align*}
\epsilon/\langle \epsilon \rangle, \text{ etc.}
\end{align*}
\]
Dissipation vs Enstrophy: Moments and Resolution

Three simulations at $R_{\lambda} 140$, on 256^3, 512^3 and 2048^3 ($k_{max} \eta \sim 1.5, 3, 12$)

Higher-order moments are underestimated at $k_{max} \eta \sim 1.5$, but $k_{max} \eta \sim 3$ ($\Delta x \approx \eta$) seems to be sufficient up to order 4.

Ratios of moments of ϵ and ζ show less sensitivity
Mixing of Passive Scalars

Schmidt number, $Sc \equiv \nu/D$ of “scalar” varies:
- 0.7 for heat in air, $O(1)$ for gaseous flames
- 7 for heat and salinity in water, $O(10^3)$ in some liquids

Weakly diffusive regime ($Sc \gg 1$) is more difficult:
- fluctuations arise at smaller scales than velocity field
- resolve Batchelor scale $\eta_B = \eta S c^{-1/2}$, at expense of Re

Some engineering literature use the Peclet no. $Pe = Re Sc$, but effects of increasing Reynolds no. and increasing Schmidt no. are different
Inertial-convective range at high Reynolds no. 2048³, at $R_\lambda \sim 700$ (higher than needed for velocity field)

$$E_\phi(k) = C_{OC} \langle \chi \rangle \langle \epsilon \rangle^{-1/3} k^{-5/3}$$

$$\langle \Delta_r u (\Delta_r \phi)^2 \rangle = -(2/3) \langle \chi \rangle r$$

Clear demonstration of both Obukhov-Corrsin scaling and Yaglom relation, better than in the past, and consistent with experiment
Scalar Gradients: Local Anisotropy

Component along mean gradient has positive skewness factor

Increasing R_λ at $Sc \lesssim 1$

![Graph 1](image1)

Increasing Sc at Low R_λ

![Graph 2](image2)

- **High Re**: local anisotropy is sustained (contrast to velocity)
- **High Sc**: return to local isotropy (beyond threshold depending on Re)
Scalar Gradients: Intermittency

PDF of component along mean gradient

Increasing R_λ at $Sc = 1$

Increasing Sc at $R_\lambda \sim 140$

$\nabla_\parallel \phi / \langle (\nabla_\parallel \phi)^2 \rangle^{1/2}$

- **High Re:** increasing intermittency (more than velocity field)
- **High Sc:** saturation of intermittency occurs beyond $Sc = O(4)$
Energy and Scalar Dissipation Rates

\[\varepsilon = 2\nu s_{ij}s_{ij} \quad R_\lambda \approx 700 (2048^3) \quad \chi = 2D(\partial\phi/\partial x_i)^2 \]

Scalar dissipation has higher peaks, and is more intermittent
3D visualization

Energy dissipation (ε) \[R_\lambda \sim 160 \ (256^3) \] Scalar dissipation (χ)

High activity topology: filaments (ε) and sheet-like structures (χ)
Dispersion: Lagrangian viewpoint

- Lagrangian frame: observer moving with the fluid
- Pollutant “cloud”: position, linear size, surface area, volume via motions of fluid particles singly and up to four
- DNS gives full instantaneous velocity field, hence can provide much more comprehensive data than experiment
- Inertial-range similarity more difficult than for Eulerian statistics, because range of time scales increase more slowly
- Reynolds number dependence is very important for use of data in stochastic modeling
Statistics of the Acceleration

\[a_0 = \frac{1}{3} \frac{\langle a_i a_i \rangle}{\langle \epsilon \rangle^{3/2} \nu^{-1/2}} \]

- \(\frac{d\mathbf{u}^+}{dt} \) (Lagrangian) force/mass (Eulerian)
- Modeling: model the acceleration, recover velocity and position by integration
- Variance \(\langle a^2 \rangle \) departs from Kolmogorov universality
- Highly intermittent, closely related to local relative motion (strain or rotation)

From Sawford et al. Phys. Fluids 2003
Solid: our data+Gotoh. Open: experiments.
Lagrangian conditional statistics

Conditional velocity autocorrelation

\[\rho(\tau; u|Z) \equiv \frac{\langle u^+(t)u^+(t+\tau)|Z^+(t) = Z \rangle}{\langle u^2|Z \rangle} \]

- In regions of large velocity gradients:
 - \(u^+ \) decorrelates faster, while \(|a^+| \) gets large

- Statistics conditioned on local “pseudo-dissipation”
 \[\varphi = \nu (\partial u_i / \partial x_j)^2 \]
 - captures both strain and rotation
 - \(\ln \varphi \) is almost a Gaussian process
 - conditional acceleration is less intermittent
Flow structure: conditioning on enstrophy

- Analyses in local axes \parallel and \perp to vorticity vector suggest behavior for large ζ at low R_λ is an indication of “vortex-trapping” effects.
- **High R_λ:** effect is weak because of rapid changes in vorticity vector orientation.
Algorithms and Data Structure

Slabs ("1-D decomposition")

- MPI_ALLTOALL communication for transposes
- No. of processors must be integer factor of N

Pencils ("2-D decomposition")

- More communication calls, but among fewer processors
- Scales better for larger problems; necessary for 4096^3
Performance Measures

IBM SP Power 4 at SDSC and Blue-Gene W at IBM Watson

<table>
<thead>
<tr>
<th>Machine</th>
<th>SP4 (1D)</th>
<th>BGW (2D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem size</td>
<td>2048^3</td>
<td>4096^3</td>
</tr>
<tr>
<td>No. of procs.</td>
<td>2048</td>
<td>2048</td>
</tr>
<tr>
<td>CPU/step/proc</td>
<td>16.2</td>
<td>110</td>
</tr>
<tr>
<td>Mflop/s/proc</td>
<td>378</td>
<td>490</td>
</tr>
<tr>
<td>Aggreg. Tflop/s</td>
<td>0.77</td>
<td>1.0</td>
</tr>
<tr>
<td>Mem/proc(Mb)</td>
<td>233</td>
<td>1410</td>
</tr>
</tbody>
</table>

- Perfect scaling would be $\text{CPU} \propto N^3 \ln_2 N/\text{PROCS}$
- **Weak scaling (vary N):** excellent, $> 100\%$ in some cases
- **Strong scaling (vary PROCS):** very good, 86$\%$ between 16 and 32 K procs for 4096^3
Outlook: our database

Large database achieved for:
- highest Re for passive scalars and Lagrangian statistics
- highest Sc for scalars at low/moderate Re

Potential for many fields of study:
- reacting flows: intermittency, differential diffusion
- droplet dynamics, zooplankton behavior
- subgrid modeling, wavelet analyses, cosmology ...

Maintain the data, and share with the community
Outlook: future computations

- 4096^3 and higher: towards Petascale computing
- Simulations to resolve small scales better
- Simulations to sample large scales better
- Active scalars: reacting flow, thermal stratification
- Lagrangian statistics in more complex flows:
 - homogeneous shear, fully-developed channel